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The Kustaanheimo-Stiefel transformation applied to the 
hydrogen atom: using the constraint equation and resolving a 
wavefunction discrepancy 

E Cahillt 
Department of Mathematical Physics, University College, Dublin 4, Ireland 

Received 1 November 1989 

Abstract. We show how explicit use of the constraint equation that arises when the 
Kustaanheimo-Stiefel transformation is applied to the hydrogen atom in R3 enables us to 
determine the wavefunctions for the constrained harmonic oscillator in R4 with the correct 
restriction on the quantum numbers in a direct and natural manner. We then highlight 
and resolve a discrepancy between the R4 oscillator wavefunctions produced by different 
authors by considering the measure to be used in R4 and the operator ordering in the 
quantised Hamiltonian. 

Many approaches have been used to investigate the relationship between the non- 
relativistic hydrogen atom and the isotropic harmonic oscillator. For a review see 
Chen (1982) and Kibler et af (1986). One of the most popular approaches has been 
via the use of the KS transformation (Kustaanheimo and Stiefel 1965). This is a 
non-bijective mapping from rectangular Cartesian coordinates for R3 to rectangular 
Cartesians for R4 subject to a constraint. 

When this transformation is applied to the hydrogen atom in R3 the constraint is 
manifest as a restriction on the oscillator quantum numbers. The usual procedure for 
determining this restriction is to compare the expressions for the energy eigenvalues 
for the oscillator and for the hydrogen atom and by demanding consistency of the 
two, the restriction can be obtained (Chen 1982). Here we demonstrate how this 
restriction arises naturally when we take the constraint into consideration. 

Following Kennedy (1982) we use the KS transformation from R3 to R4 in the form 

and we take as our self-adjoint hydrogen Hamiltonian: 
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The constraint arising from the last row of ( 1 )  becomes (Kennedy 1982): 

qlP4-qZP3+t3P2-q4Pl =O. 
Next we quantise the system by making the usual assignments 

a 
pk’-Lh-* 

a q k  

In order to quantise the constraint equation (2) we do not treat it as an operator 
identity but instead following Dirac (1964) we interpret it as a restriction on allowed 
energy states. Acceptable wavefunctions must be in the kernel of the operator on the 
left of (2):  

We now introduce polar coordinates for R4 (Chen 1980) 

q ,  = R cos w sin 77 

q 4 =  R cos w cos 7 

q2 = R sin w sin 5 
q3 = R sin w cos 5 

and the Schrodinger equation becomes: 

- -”’[ -- 1 a ( R 3 -  a (+)) - +- 1 ( - 1 a‘* 
8m R 4 a R  dR R R 4  C O S ’ ~  dv2 sin w a.$’ -+.- 

a**) 
a e’ - (cos w sin w 9)3 - 3 * = E+. 

ao 

1 + 
R 4  cos w sin w aw 

The constraint (3) assumes the simple form 

If we now let 

* ( R ,  7 7 3 6 5  0) = X(R)H(t ) )G( .$)W(w)  

and separate the variables we obtain 

- -h’ - 1 - d [ R 3  d (“)I - ( L + - ! - ) X  = EX 
8m R 4 d R  dR R R’ R 

H ” + p H  = O  
G“ + u G  = 0 

8m 
h’ 

d 
dw tan w - (sin 2w W ’ )  - 2 U +  p tan’ w +, A sin’ w 

(4) 

( 7 )  

Angular equations. Next we use the constraint to restrict the class of acceptable 
wavefunctions. Using (7)  and separation of the variables in (6) yields 

H(q)  = A  exp(K77) G ( & ) =  B exp(-K&). (12) 
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From (9) and (10) we must have (Schiff 1968) 

m , ,  m2EZ 2 p = m :  v = m ,  

and (13)  implies 

m I  = m2= m (14) 
and 

K = fLm. (15 )  
Therefore the constraint has enabled us to determine the restriction on the oscillator 
quantum numbers directly. 

If we now let 

e = 2 &  and @ ( e ) =  w ( ~ )  
and use (14), then ( 1 1 )  can be reduced to 

This is the 6 for hydrogen and so we must have (Schiff 1968) 

- A 2  
A = - - I ( / +  1 )  

2m 

W ( w )  = Pr"(c0s 2 0 ) .  (18)  
The normalised angular component of the constrained oscillator wavefunction is then 

H ( v ) G ( S ) W ( ~ ) =  Y/m(2~9 ~$5). (19) 
Radial equation. I f  we make the substitutions (Cizek and Paldus 1977) 

1 
r =  R 2  A( r) = X( R )  (20) 

then the oscillator radial equation reduces to the normal hydrogen radial equation: 

- A 2  1 d dA 
2m r2 dr  
- - - ( r 2 r )  - 

Therefore the complete oscillator wavefunction which satisfies the constraint is 

(22) / + 1 / 2  , / + I  
+ n / m ( R ,  0, TI, s ) = N ~ x P ( - ~ ~ ) v  Ln+f (u )Y /m(2w,  V + S )  

where ( ~ = ( 2 m e ~ / A ~ n ) R *  and Ly;/l(cr) are as defined in Schiff (1968) and N is a 
normalisation constant. 

A measure for R4. The correspondence with the usual hydrogen wavefunctions is 
obvious, the only discrepancy being the occurrence of the factor c " ~ .  This factor does 
not occur in the wavefunctions as given by Chen (1982). However, he notes the need 
to introduce an artificial volume element for R4 for his wavefunctions. This discrepancy 
is resolved when consideration is given to the measure to be used when integrating 
over R4. Kennedy (1982) transformed the classical hydrogen atom in R3 to R4 and 
then quantised it, so the appropriate measure is the 'natural' volume element for R4: 

dV=dq i  dq2 dq3 dq,. 

His ordering for the kinetic component of the Hamiltonian, ( 1/q)p2( l / q ) ,  is self-adjoint 
with respect to this measure (Cahill 1988). 
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However, in the works of Chen (1982), Kibler er a1 (1986) and Davtyan et a1 (1987) 
the hydrogen atom is first quantised in R' and then the resulting differential equation 
is mapped to R4 via the KS transformation. So the appropriate measure is the transfor- 
med R' volume element which is (Cahill 1988) 

d V ' =  q2 dV. 

When transforming the Schrodinger equation from R3 to R4 the Laplacian transforms 
as 

and so formally transforming 
with the operator ordering 

the quantised system is equivalent to quantising in R4 

and this ordering is self-adjoint with respect to 

q2 dV. 

These distinct approaches give rise to radial wavefunctions which differ by a factor of 
q. However they give rise to the same probabilities when we use the appropriate measure 

lX(q)12q2 d V =  IqX(q)l'dV. 
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